## Probing new intra-atomic force with isotope shifts

09 Jan. 2018 Fundamental Physics Using Atoms @ Nagoya U

YAMAMOTO, Yasuhiro (Yonsei U)

Based on 1710.11443 with K. Mikami & M. Tanaka (Osaka U)

#### Physics of light new particles





#### **Precision measurements**

#### Error of the electron g-2 is $O(10^{-10})$ .

 $\frac{g_e - 2}{2} = \begin{cases} -0.001\,159\,652\,180\,73(28)_{\rm EX} \\ -0.001\,159\,652\,181\,64(76)_{\rm TH} \end{cases}$ 

# Error of the atomic clocks O(10<sup>-15</sup>–10<sup>-18</sup>). <sup>87</sup>Sr: 429 228 004 229 873.4 Hz (From Wikipedia:atomic clock)

The calculation of the spectrum is too difficult. (Even three body is disaster!)

Can we reduce the theoretical uncertainty?



#### Introduction

The linearity and its violation

The field shift and its higher order

The particle shift

Numerical results and other constraints

#### Conclusion

## Isotope shift and the linearity

Isotope shifts follow a linearity.

$$\delta H_{A'A} = \delta K_{A'A} + \delta V_{A'A}$$
  
Isotope dependence.  
$$\delta \nu = G \delta \mu + F \delta \langle r^2 \rangle$$
  
Wave function dependence.

Linearity for isotope pairs. 1963: W. H. King

$$\frac{\delta\nu_2}{\delta\mu} = \frac{F_2}{F_1}\frac{\delta\nu_1}{\delta\mu} + G_2 - \frac{F_2}{F_1}G_1$$

Constant for isotope pairs.

## Isotope shift and the linearity

Isotope shifts follow a linearity.





Constant for isotope pairs.

## Field shift

#### Particle shift

$$\mathsf{Def:} \int d\vec{r} \left( |\psi_j(\vec{r})|^2 - |\psi_i(\vec{r})|^2 \right) (A' - A) \frac{g_n g_e}{4\pi} \frac{e^{-mr}}{r}$$

Sensitive to the e-n coupling

Similar to the field shift.

For heavy mediator

$$= (A' - A)\frac{g_n g_e}{4\pi} \sum_k \frac{k!}{m^{k+2}} \xi_k$$

 $\delta \nu = G\delta\mu + F\left(\delta\langle r^2\rangle + c_0/m^2\right)$ 

Keep the linearity

Light

$$+\tilde{F}\left(\delta\langle r^4\rangle+c_2/m^4\right)+\cdots$$
 Non-linearity

## Wave functions of ions



Numerically, good agreement with other results.

### Sensitivity and constraints



NLO field shift limits the future sensitivity.
 100 eV – 1 MeV is the main target.





SM background of NLO field shift.

The scaling law at the heavy region.

