Proton Charge Radius

by electron scattering under the lowest-ever momentum transfer

Toshimi Suda

Research Center for Electron-Photon Science (ELPH), Tohoku University, Sendai, JAPAN

Proton Charge Radius Puzzle

Proton Radius Puzzle ?

R. Pohl *et al*., Nature 466 (2010) 213. A. Antognini *et al.*, Science 339 (2013) 417.

Proton Charge Radius measurements

FPUA @ Nagoya Jan. 8-9, 2018

C. Carlson, Prog. Part. Nucl. Phys. 82 (2015) 59-77.

To understand the puzzle

Electron scattering group of Tohoku Univ.

World's first

1) short-lived exotic nuclei @ RIKEN-SCRIT facility

World's first electron scattering facility

charge radii and charge density distributions

2) proton @ Tohoku Univ. (Sendai)

World's lowest Q²

Electron scattering off short-lived exotic nuclei

FPUA @ Nagoya Jan. 8-9, 2018

Nuclei targeted for electron scattering

SCRIT collaboration

RIKEN + Rikkyo U. + Tohoku U.

Short-lived Exotic Nuclei

Production-hard + Short-lived

Elastic electron scattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_{\mathrm{Mott}}}{\mathrm{d}\Omega} |F_c(q)|^2$$
$$F_c(q) = \int \rho_c(\vec{r}) e^{i\vec{q}\vec{r}} d\vec{r}$$
$$\rho_c(\vec{r}) = \sum_p \psi_p^*(\vec{r}) \psi_p(\vec{r})$$

SCRIT (Self-Confining RI ion Target)

L ~ 10²⁷ /cm²/s with only ~10⁸ target nuclei

target thickness used to be ~10²⁰ /cm²/s

Low Luminosity

Charge density distribution Charte radius

(Review) T. Suda and H. Simon, Prog. Part. Nucl. Phys. 96 (2017) 1-31. (First Physics Data) K. Tsukada et al., Phys. Rev. Lett. 118(2017) 262501.

World's first facility for exotic nuclei@RIBF

FPUA @ Nagoya Jan. 8-9, 2018

First experiment (¹³²Xe(e,e'))

FPUA @ Nagoya Jan. 8-9, 2018

using only ~10⁸ target nuclei

~10⁸ ions are trapped on e-beam (~ 1 mm²)

	Ee	N _{beam}	ρ·t	L
Hofstadter's era (1950s)	I 50 MeV	~ InA (~10 ⁹ /s)	~10 ¹⁹ /cm ²	~10 ²⁸ /cm ² /s
JLAB	6 GeV	~100µA (~10¹⁴ /s)	~10 ²² /cm2	~10 ³⁶ /cm ² /s
SCRIT	l 50 - 300 MeV	~200 mA (~10 ¹⁸ /s)	~ 10 ¹⁰ /cm ²	~10 ²⁷ /cm ² /s

The SCRIT technique reduces the required target thickness by ~10⁻¹⁰ !!

Proton Charge Radius

Charge Radius and Density Distribution

FPUA @ Nagoya <u>Jan</u>. 8-9, 2018

RMS radius

 $\langle r^2 \rangle = \int r^2 \rho(\vec{r}) d\vec{r}$ $= 4\pi \int r^4 \rho(r) \,\mathrm{d}r$

Charge Radius and Density Distribution

FPUA @ Nagoya Jan. 8-9, 2018

Charge Radius by Electron Scattering

Proton charge radius by e-scattering

ρ(r)

(even at $r \sim 4 \text{ fm}$)

 $< r^2 > = \int r^2 \rho(\vec{r}) d\vec{r}$

0

radius is sensitive to $\rho(r)$ at large distance

0.5

r (fm)

1.5

FPUA @ Nagoya Jan. 8-9, 2018

$$< r^2 > \equiv -6 \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2}|_{Q^2 \to 0}$$

ill problem : higher order contribution

lower Q² as possible

Charge Radius by Electron Scattering

2 **G**_E(**Q**²) and Charge Radius

$$G_E(Q^2) \sim 1 - \frac{\langle r^2 \rangle}{6}Q^2 + \frac{\langle r^4 \rangle}{120}Q^4 - \frac{\langle r^6 \rangle}{5040}Q^6 + \dots$$

Taylor expansion of $G_E(Q^2)$ at low Q^2

4 momentum transfer $Q^2 = 4 E_e E'_e \sin^2(\theta/2)$

G_E(Q²) data

J. Bernauer et al. Phys. Rev. C90 (2014) 015206.

Deduced Radius from Mainz data

FPUA @ Nagoya Jan. 8-9, **20**18 **1 ()**

treatments of higher-order effects

introduce large uncertainty in the radius

(Phys. Rev. C90 (2014) 045206)

Electron Scattering at Lowest-ever Momentum Transfer

ULQ² (Ultra-Low Q²) Collaboration

Tohoku Univ. : H. Kikunaga, K. Tsukada, Y. Honda, T. Tamae. T. Mutoh, K. Takahashi,

K. Nanbu, M. Miyabe, A. Tokiyasu, K. Nanba, T. Aoyagi S. Sasaki, N. Tsukamoto

Miyazaki Univ. : Y. Maeda

Hampton Univ. : Michael Kohl

e-scattering off proton at ultra-low Q²

FPUA @ Nagoya Jan. 8-9, 2018

Our Goal !

 $G_E(Q^2)$ measurements at $0.0003 \le Q^2 \le 0.008$ (GeV/c)²

Low energy electron beam ($20 \le \text{Ee} \le 60 \text{ MeV}$) Absolute cross section measurement Rosenbluth separation ($G_E(Q^2), G_M(Q^2)$ separation)

A key of the e+p experiments at ULQ²

Relative measurement for ¹²C(e,e)¹²C and p(e,e)p

CH₂ (e,e') experiment

Adv. Meson Lab., RIKEN Aug. 3, 2016

1) ¹²C : "standard" nucleus for (e,e')

μ-Xray electron scattering

$$\frac{\Delta < r_{^{12}C}^2 >^{1/2}}{< r_{^{12}C}^2 >^{1/2}} \sim 3 \times 10^{-3}$$

2) ¹²C(e,e)¹²C, p(e,e)p by kinematics

ΔE = 0.2 - 4 MeV for q = 20 - 90 MeV/c

Δp/p ~ 10⁻³

3) no severe damage of target is expected large cross section : $\frac{d\sigma}{d\Omega} \propto 1/q^4$ le ~ 1 nA - 1 µA

Electron spectrometer under construction

Recent News from H-spectroscopy

FPUA @ Nagoya Jan. 8-9, 2018

Science Oct. 6, 2017

Science 06 Oct 2017: Vol. 358, Issue 6359, pp. 79-85 DOI: 10.1126/science.aah6677

RESEARCH

RESEARCH ARTICLE

ATOMIC PHYSICS

The Rydberg constant and proton size from atomic hydrogen

Axel Beyer,¹ Lothar Maisenbacher,^{1*} Arthur Matveev,¹ Randolf Pohl,¹† Ksenia Khabarova,^{2,3} Alexey Grinin,¹ Tobias Lamour,¹ Dylan C. Yost,¹‡ Theodor W. Hänsch,^{1,4} Nikolai Kolachevsky,^{2,3} Thomas Udem^{1,4}

At the core of the "proton radius puzzle" is a four-standard deviation discrepancy between the proton root-mean-square charge radii (r_p) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R_{∞} = 10973731.568076(96) per meter and r_p = 0.8335(95) femtometer. Our r_p value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

Fig. 1. Rydberg constant R_{∞} **and proton RMS charge radius** r_{p} . Values of r_{p} derived from this work (green diamond) and spectroscopy of μ p (μ p; pink bar and violet square) agree. We find a discrepancy of 3.3 and 3.7 combined standard deviations with respect to the H spectroscopy world data (12) (blue bar and blue triangle) and the CODATA 2014 global adjustment of fundamental constants (3) (gray hexagon), respectively. The H world data consist of 15 individual measurements (black circles, optical measurements; black squares, microwave measurements). In addition to H data, the CODATA adjustment includes deuterium data (nine measurements) and elastic electron scattering data. An almost identical plot arises when showing R_{∞} instead of r_{p} because of the strong correlation of these two parameters. This is indicated by the R_{∞} axis shown at the bottom.

Electron Scattering off Proton @ ELPH, Tohoku Univ.

- 1) elastic e+p scattering at lowest-ever Q² region
- 2) $G_E(Q^2)$ at $0.0003 \le Q^2 \le 0.008$ (GeV/c)²
- 3) G_E is extracted by the Rosenbluth separation
- 4) absolute cross section measurement

relative to ${}^{12}C(e,e){}^{12}C$: sys. err. $\sim 3x10{}^{-3}$

- 5) Ee = 20 60 MeV, θ = 30 150°
- 6) constructing of new beam line, and spectrometers
- 7) the experiments will start in 2019