neutron electric dipole search at TRIUMF

Shinsuke Kawasaki (KEK) for TUCAN collaboration

outline

- Neutron electric dipole moment
- Ultra-cold Neutron (UCN)
- UCN production by super thermal method
- UCN source at TRIUMF
 - Vertical source
 - developed at RCNP
 - first UCN production at TRIUMF on November 13, 2017
 - UCN source upgrade
 - LD2 moderator
 - High cooling power helium cryostat
 - expected statistics

Neutron Electric Dipole Moment (nEDM)

T reversal

S

d

Sakharov conditions Baryogenesis

- 1. Baryon number violation.
- 2. C-symmetry and CPsymmetry violation.
- 3. Interactions out of thermal equilibrium.

 Vector derived from charge distribution

$$\vec{d} = d \frac{\vec{s}}{|\vec{s}|}$$
 unit: e cm

$$d \neq 0 \rightarrow T$$
 violation

Assume CPT conservation

 \rightarrow CP Vioration

nEDM prediction SM ~10⁻³² ecm

Probe of beyond SM physics

current upper limit of nEDM 3.0×10^{-26} ecm @ILL, Grenoble <u>statistics</u> 1.5×10^{-26} ecm systematics 0.7×10^{-26} ecm

Statistically limited -> necessity of high intensity UCN source

3

How to measure nEDM?

Measure precession frequency under electro-magnetic field

$$H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

precession frequency

$$\hbar\omega = 2\mu_n B \pm 2d_n E$$

difference

$$\begin{split} \Delta \omega &= \omega_{\uparrow\uparrow} - \omega_{\uparrow\downarrow} = \frac{4dE}{\hbar} \\ \text{in case of E = 10kV/cm, d = 10^{-27}ecm} \\ \Delta \omega &= 4 \times 10^{-7}Hz \end{split}$$

cf. Larmor frequency of neutron 30Hz @ $B_0 = 1\mu T$

accuracy of 10⁸

→ High frequency determination accuracy (Ramsey resonance technique)

and

ightarrow High field stability

 \rightarrow Co-matnetometer

co-magnetometer

P. G. Harris et al., Phys. Rev. Lett. 82, 904 (1999).

frequency shift

 $\Delta \omega = 4 \times 10^{-7} Hz$ (E = 10kV/cm, d = 10⁻²⁷ecm) cf. Larmor frequency of neutron 30Hz @ B₀ = 1µT

required magnetic field stability : $10^{8}!!$ 1μ T * 10^{-8} = 10 fT

It is difficult to stabilize magnetic field to such an accuracy

-> monitor and correct magnetic field

co-magnetometer

feels same magnetic field as UCN

ILL use ¹⁹⁹Hg co-magnetometer

polarization is measured by UV laser

Our plan : ¹⁹⁹Hg, ¹²⁹Xe dual co-magnetometer

monitor magnetic field strength and gradient

Ultra Cold Neutron

Ultra Cold Neutron

Energy	∼ 100 neV
Velocity	∼ 5 m/s
Wave length	~ 50 nm

Interaction

 $\begin{array}{ll} \mbox{Gravity} & 100 \ \mbox{neV/m} \\ \mbox{Magnetic field} & 60 \ \mbox{neV/T} \\ \mbox{Weak interaction} \\ \mbox{β-decay} & \mbox{n} \rightarrow \mbox{p} + \mbox{e} \\ \mbox{Strong interaction} \\ \mbox{Fermi potential} & 335 \ \mbox{neV} (\mbox{58Ni}) \\ \mbox{$atom distance : $\sim $$\mbox{\AA} \\ \mbox{$UCN feels average nuclear potential} \end{array}$

UCN can be confined material bottle
 →Use in various experiments
 nEDM, neutron lifetime, gravity, ...

UCN production by super fluid Helium

UCN production

spallation neutron $\downarrow D_2O$, LD2 Moderator (300K, 20K) cold neutron \sim meV \downarrow Phonon scattering in He-II Ultra cold neutron \sim 100neV

Feature of our source

spallation neutron
 High neutron flux
 small distance between target and
 UCN production volume

• Super-fluid Helium (He-II) converter long storage lifetime

important to accumulate UCN Helium 4

- no neutron absorption cross section
- up-scattering by phonon $\tau_s = 600 \text{ s at } T_{HeII} = 0.8 \text{ K}$ $\tau_s = 36 \text{ s at } T_{HeII} = 1.2 \text{ K}$ $1/\tau_s \propto T^7$

Vertical UCN source

- Vertical UCN source
 - developed at RCNP
 - T_{He-II} : 0.8 K
 - UCN life time: 81 sec
 - UCN density: 9 UCN/cm³

 $-400 \text{ MeV} \times 1 \mu\text{A} = 0.4 \text{ kW}$

Y, Masuda et. al., Phys. Rev. Lett. 108, (2012), 134801

move to TRIUMF

- modification for safety requirement
- 2017 Jan. Apr. install at Meson hall
- 2017 Nov. UCN production SUCCEEDED!!

UCN Source @ TRIUMF

Major Milestone

- ✓ 2016
- ✓ 2016
- **√**2017

commissioning proton beam line and cold neutron production UCN production by Vertical source (~ 1μ A)

proton beam line for UCN source(BL1U 500MeV, 40μ A)

- 2020 High intensity UCN source (40μA)

First UCN production at TRIUMF

- 2014 2017: installation of beamline and source
- Nov 13, 2017: first UCN produced at TRIUMF
- Approx. 5×10^4 per shot at 1 µA and > 3×10^5 at 10 µA
- experimental program: source and UCN hardware characterization
- UCN source is quite stable for more than one month
- Detailed analysis is ongoing

UCN will be used for R&D for Upgrading facility and EDM apparatus

UCN vield linearity in beam current

- Maximum UCN count rate 47000 at 1uA (RCNP best shot 80000)
- We have non optimized UCN valve, longer UCN guides and an aluminum foil before the detector
- By far enough UCN to do our measurement program
- Vertical Source is capable of sustaining higher currents and the UCN yield can be increased significantly.
- Highest number for 60 s irradiation and 10 μ A: 3.25×10^5

Other experimental program

- Detector characteristic (³He gas, ⁶Li grass)
- UCN guide characteristic
- and so on,
 detailed analysis is ongoing 12

UCN source up-grade

proton beam power

0.4 kW at RCNP -> 20 kW at TRIUMF

A new helium cryostat which has high cooling power is necessary

Heat load on He-II depends on geometry

- distance between target and He-II
- cold moderator
- gamma shield and so on

 ratio of this is constant in some region

Optimization is necessary

LD₂ Moderator Cryostat

5 – 9 times larger cold neutron flux is achievable compared with ice D_2O

Heat load on UCN production volume

deal with such a

around 1 K

RTRIUMF

- Radial LD₂ layer more important than lower
- Best He-II-bottle height 30-40 cm, radius 15-20 cm (for current cooling scheme)
- Limited by amount of LD₂!
- For He-II height 30 cm, radius 15 cm, 40 μA beam:
 - 20.6 | He-II, 115 | LD₂
 - 3.9·10⁷ UCN/s
 - 7.9 W max. heat in He-II huge heat load
 - 65 W max. heat in LD₂
- Best strategy to reduce LD₂: reduce He-II size and go closer to target

2017-10-18

He-II

16 cm

D20

He cryostat

- to keep He-II temp. ~ 1.0 K
- decompressed Helium 3
- ³He vs ⁴He
 - vapor pressure @ 0.8K
 - ³He: 3 Torr
 - ⁴He: 0.01 Torr
 - cooling power

1.0E+4 1.0E+3 1.0E+2 1.0E+1 1.0E+0 1.0E+0 1.0E+1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Temperature (K)

Cooling power @ 10⁴ m³/h pumping

- @ 0.8K with 10, 000 m³/hour pumping
- ³He: 15W
- ⁴He: 0.13 W

Heat transfer between heating point and cooling point

- Heat transfer in He-II
 - below 1 K, heat transfer is not good because of low fraction of normal fluid which convey heat (two fluid model)
- Kapitza conductance of heat exchanger
 - Conductance at the surface between liquid and solid is small at low temperature

Superfluid Helium

Two Fluid Model

	Normal fluid	ormal fluid Superfluid	
Viscosity	H _n	η _s = 0	
Entropy	S _n	$S_s = 0$	

- Ratio of super/normal component depends on temperature.
- fraction of normal mode become small in low temperature.

<u>Heat transport</u>

- Since superfluid has no entropy, heat is transported only by normal fluid.
- Heat transport in low temperature (< 1K) become small because of small fraction of normal fluid

Heat source

Gorter-Mellink Equation

$$q_j(\mathbf{r}) = -\left(f(T)^{-1}\frac{\partial T(\mathbf{r})}{\partial x_j}\right)^{1/3}, \quad f(T) = \frac{A_{gm}\rho_n}{\rho_s^3 s^4 T^3}$$

 $q_j(\mathbf{r})$: [W/m²] Heat Flux vector at \mathbf{r} . $f^{-1}(T)$: [W³/m⁵ K] Heat transfer function. ($\Leftrightarrow q_j = -\lambda \partial_j T$) A_{gm} : Gorter-Mellink mutual friction parameter, [m·sec].

f(T)⁻¹ : Heat transfer function of He-II based on Two fluid model

Temperature difference in He-II

Chamber temperature, T_H , can be solved numericall using following Gorter-Mellink equation.

$$Q_{in} = \left(\frac{A^3}{L} \int_{T_L}^{T_H} f(T)^{-1} dT\right)^{1/3} A$$

A : cross section of He-II L : distance of heat transfer

Kapitza Conductance

- Kapitza conductance is Conductance at the junction between liquid and solid is small at low temperature
- Kapitza conductance, $h_{\kappa}(T)$ is a function of temperature.
- There are several theory on Kapitza conductance.
 - Phonon limit
 - $h_{K}(T) \approx 4500 T^{3} [W/m^{2}K]$
 - 2 10 times larger than measured
 - Khalatnikov theory
 - $h_{K}(T) \simeq 20 T^{3} [W/m^{2}K]$
 - 10 100 times smaller than measured
- Experimental data strongly depends on surface quality
 - plan to measure Kapitza conductance at KEK

Kapitza conductance between Copper and He-II Helium cryogenics, Steven W. Van Sciver

Cu Heat exchanger should be plated by Ni Kapitza conductance between Cu-Ni is large enough since junction is solid-solid

- Kapitza conductance between Ni and He-II $h_{K Ni}(T) = f^{*}h_{K_{Cu}}(T)$ f = 0.61
- Kapitza conductance between Cu and 3He h_{K} (HeII) = (1.2 2.6) h_{K} (3He)

ex) average quality of Cu, 10 W heat load

- junction between He-II and Ni
 - h_{K Ni} (1.0K) = 244 [w/m2 K]
 - ΔT _{He-II Ni} = 0.16 K
 - T_{Ni} = 0.84 K
- junction between Cu and 3He
 - h_{K Ni} (0.84K) = 232 [w/m2 K]
 - $\Delta T_{He-II-Ni} = 0.09 \text{ K}$

•
$$T_{3He} = 0.75 \text{ K}$$
 22

Equilibrium temperature

Equilibrium temperature can be calculated as a function heat load.

example)

d = 150 mm, L = 1,500 mm pumping speed 10,000 m³/hour Heat load : 10 W case

Temperature distribution

$$T_{He-II H}$$
: 1.15 K ($\tau_{up-scat}$ = 50 sec)
 $T_{He-II L}$: 1.00 K
 $T_{Cu H}$: 0.84K
 $T_{Cu L}$: 0.83 K
 T_{3He} : 0.75 K
ΔT = 0.40 K

Large uncertainty in parameter (Kapitza, GM)

-> have to be tested

-> we will have experiments at the beginning 2018

Alternative plan : direct pumping

- direct pumping of He-II
 - another way to cooldown He-II
 - There is no effect of Kapitza conductance since they have no heat exchanger
 - if Kapitza conductance is found to be smaller than expected, the direct pumping have large advantage
 - He-II volume can be small
 - temperature difference in He-II become small
 - Cooling power : 7 W at 1.2 K with 10,000 m³/hour pumping
 - upscattering life time at 1.2 K : 36 sec

High cooling power cryostat

- A new He-II cryostat is being developed
 - TRIUMF proton beam line BL1U

500 MeV \times 40 μ A = 20 kW

- necessary cooling power is around 10 W at 1.0 K
- Heat conductance is important
 - inside He-II
 - Kapitza conductance between He-II/3He and heat exchanger
- Isopure ⁴He direct pumping is an alternative method

Expected statistics after UCN source upgrade

- New He cryostat will be made for 20 kW operation
- LD2 moderator increase cold neutron flux by factor 5 9
- UCN guide coating facility will be established at U. Winnipeg

	vertical source	horizontal source	factor
proton beam	0.4 kW	20 kW	× 50
production volume	8 L	12 L	× 1.5
LD2 moderator	-	-	× 5–9
UCN production rate	$3.2 \times 10^4 \text{ UCNs}$	2.3 × 10 ⁷ UCN/s	~ 700

statistical sensitivity

$$\sigma_d = \frac{\hbar}{2\alpha E t_c \sqrt{N}}$$

E = 10 kV/cmt_c = 130s $\alpha = 0.8$ (visibility) N : number of UCN

 ρ = 680 Pol. UCN/cm³ @20kW operation, TRIUMF in cell of ϕ 36 cm and H 15 cm (15L) × double cell N = 2.1 × 10⁷ UCN/batch

 $\sigma_d = 5.6 \times 10^{-26} \text{ ecm/cycle}$ (1 cycle : 8 fill to determine the resonant frequency) assume stable running of 14 hours/day $\sigma_d = 1 \times 10^{-27} \text{ ecm/100 MT day}$

Second UCN port : Y switch

beamline layout

- Bend is necessary for radiation protection
 - to not see target area directly
- Y switch can divert UCN to second area.
 - R&D for UCN guide, detector and so on
 - open for user facility in future

If you have an interest idea to use UCN, please contact us!! 27

Summary

- High UCN density is essential to overcome current limit of neutron EDM measurement sensitivity
- UCN production in superfluid helium is a viable way to achieve a high density UCN source
- UCN production with the vertical UCN source succeeded
 will use UCN produced for R&D for source and nEDM experiment
- High intensity UCN source is being developed
 - proton beam power : 500 MeV * 40 μ A = 20 kW
 - new cryostat with higher cooling power
 - necessary cooling power : ~10 W at 1.0 K
 - 3He pumping, isopure 4He pumping
 - Final optimization is ongoing
 - statistical error of 10⁻²⁷ ecm / 100 MT day
 - Plan to produce UCN from 2021