Probing the TeV scale and beyond with EDMs

Junji Hisano (KMI, Nagoya Univ.)

10th International Workshop on Fundamental Physics Using Atoms (FPUA)

Contents

- Introduction
- Experimental and theoretical status of EDMs
- Sensitivities of EDMs to BSM
- Summary

Big issue in particle physics now

Where is BSM ? TeV scale or higher energy scale?

Tools to search for new physics

EDMs

Magnetic and electric dipole moments (MDM and EDM) with spin **S**

$$H = -\mu \mathbf{B} \cdot \frac{\mathbf{S}}{S} - d \mathbf{E} \cdot \frac{\mathbf{S}}{S}$$

Under time(T) and space(P) reflections, EDM is T, P-odd.

$$P: \mathbf{E} \to -\mathbf{E}, \ \mathbf{B} \to +\mathbf{B}, \ \mathbf{S} \to +\mathbf{S}$$
$$T: \mathbf{E} \to +\mathbf{E}, \ \mathbf{B} \to -\mathbf{B}, \ \mathbf{S} \to -\mathbf{S}$$

EDMs are sensitive to CP violation under CPT inv.

EDMs are good probes to CP violation in particle physics models.

EDMs sensitive to TeV-scale and beyond

Current upper bounds on electron and neutron EDMs: $|d_e| < 8.7 \times 10^{-29} \text{ e cm}_{(ACME, 13)}$ $|d_n| < 2.9 \times 10^{-26} \text{ e cm}_{(Baker \text{ et al}, 06)}$

Dim. analysis for EDM:

$$d_e \sim e \underbrace{\frac{m_e}{M^2}}_{M^2} = 10^{-23} e \operatorname{cm} \left(\frac{1 \operatorname{TeV}}{M}\right)^2$$
$$d_d \sim e \underbrace{\frac{m_d}{M^2}}_{M^2} = 10^{-22} e \operatorname{cm} \left(\frac{1 \operatorname{TeV}}{M}\right)^2$$

(Renormalizable models give extra suppressions to EDMs by loop factors ($\sim O(10^{-(2-4)})$).)

Searches for symmetry breaking

Global symmetries in SM are not exact in nature.

- CP violation (CKM in the SM) EDMs
- Lepton-flavor violation (neutrino oscillation)
 Charged lepton flavor-violating decay
- Lepton and/or baryon number violation (Baryon asymmetry in the universe)

0vββdecay Proton decay

Searches for symmetry breaking

Sensitivities of current experimental bounds on new physics scale (Λ). Only one loop factors are included for the loop processes. Small symmetry breaking parameters suppress the sensitivities.

CP phases are naturally O(1)?

CKM

EDM measurements

Schiff's theorem:

EDM for neutral syst. which composes of non-rel. point particles is zero. Neutral particle EDMs:

paramagnetic atoms (TI, Fr..) /molecules (YbF, ThO, PbO..)
 Sensitive to electron EDM.

 $|d_e| < 8.7 \times 10^{-29} e cm (ThO,2013) , 1.3 \times 10^{-28} e cm$ (HfF⁺,2017)

Future prospects: $|d_e|^{-30}$ e cm

- diamagnetic atoms (Sensitive to T, P-odd nuclear force)
 |d_{Hg}|<3.1 × 10⁻²⁹ e cm, |d_{Xe}|<6.6 × 10⁻²⁷ e cm
- neutron

 $|d_n| < 3.0 \times 10^{-26}$ e cm (revised analysis, 2015) UCN experiments aim to $|d_n| \sim 10^{-(27-28)}$ e cm.

(Flavor-conserving) CP-violating interactions at parton level up to D=6

$$\begin{split} -\mathcal{L} &= \frac{g_s^2 \bar{\theta}}{32\pi^2} G \tilde{G} + \sum_{\substack{f=u,d,s,e \\ \text{term}}} d_f \frac{i}{2} \bar{f}(\sigma \cdot F) \gamma_5 f + \sum_{\substack{q=u,d,s \\ q=u,d,s}} d_f^c \frac{i}{2} \bar{q}(\sigma \cdot G) \gamma_5 q \\ \end{split}$$

$$+rac{1}{3}wGG ilde{G}+\sum_{f,f'=u,d,s,e}(ar{f}f)(ar{f}\gamma_5 f)$$

Weinberg op.

4-Fermi

• Wilson coefficients for CP-violating operators depend on CP phases in particle physics models.

(Flavor-conserving) CP-violating interactions at parton level $-\mathcal{L} = \frac{g_s^2 \bar{\theta}}{32\pi^2} G \tilde{G} + \sum_{\substack{f=u,d,s,e \\ \text{QCD}}} d_f \frac{i}{2} \bar{f}(\sigma \cdot F) \gamma_5 f + \sum_{\substack{q=u,d,s \\ \text{CEDM}}} d_f^c \frac{i}{2} \bar{q}(\sigma \cdot G) \gamma_5 q$

Strong-CP problem: $d_n \sim e\bar{\theta} \times 10^{-(16-17)} ecm$ The most promising solution is Peccei-Quinn mechanism. $\bar{\theta} = \langle S \rangle \simeq 0 \quad (S : axion)$

Other proposal: spontaneous CPV, vanishing quark mass.

(Hg,Xe, Ra, Rn)

New type of EDM measurements

Charged particles in storage rings (new methods):

Strong motional E field for relativistic particles in B field. Measure of tilt of spin precession plane in E field.

proton/deuteron

prospects: $d_p \sim 10^{-29}$ ecm, $d_D \sim 10^{-29}$ ecm. Anatomic study of hadronic EDMs would be possible. $d_D = (d_p + d_n) + d_D^{NN\pi}$

muon

Prospects: $d_{\mu} \sim 10^{-21}$ ecm (ultimate case, 10^{-24} ecm) flavor-blind case: $d_{\mu} = (m_{\mu}/m_e)d_e < 2 \ 10^{-26}$ ecm Larger value might be possible in flavor-violating cases.

SM prediction

In the SM, origin of CP violation is a phase in Kobayashi-Maskawa matrix (except for QCD theta term). CPV obs. are prpto to Jarlskog (rephasing) invariant:

$$J_{\rm CP} = {\rm Im} V_{cs}^{\star} V_{us} V_{cd} V_{ud}^{\star} \sim 10^{-5}$$

• Quark EDMs

 $d_d \simeq 10^{\text{-}34} \mbox{ e cm}$ (3loops at $O(G_F^2 \ \alpha_s)$)

- Neutron EDM
 d_n~ 10⁻⁽³¹⁻³²⁾ e cm (long-distance effect at O(G_F²))
- Electron EDM

 $d_e \sim 10^{-40} e cm (4 loops O(G_F^3 \alpha_s))$

Discovery of non-zero EDM means beyond the SM.

Assuming maximal CP phases, one-loop diagrams for (C) EDMs give strong constraint to new-physics above the TeV scale, and even two-loop diagrams can also constrain new physics around TeV scale.

Supersymmetric Standard Model

Boson \rightleftharpoons Fermion

Most promising model of beyond the standard model

- Hierarchy problem
- Gauge coupling unification
- Dark matter in Universe
- Light Higgs mass

 $(M_Z \ll M_{
m Planck})$

 $(M_{\rm GUT} \simeq 10^{16} {\rm GeV})$

 $(\Omega_{
m DM}\simeq 22\%)
onumber \ (m_{h^0}\,{\lesssim}\,130-140{
m GeV})$

CP phases in the supersymmetric standard model

SUSY breaking terms have generically complex phases, which contribute to CP violation.

Following diagrams generate electorn EDM and quark (C)EDMs.

EDMs in Supersymmetric standard model

High-scale SUSY with generic flavor violation

In High-scale SUSY/miniSplit-SUSY model, sfermion masses are O(100)TeV while gaugino masses are around TeV. tan β ~1. Those suppresses EDMs. Even in the case, neutron EDM may be accessible to the model if generic flavor violation is assumed.

- McKeen, Pospelov, and Ritz
- Moroi and Nagai
- Altmannshofer, Harnik, Zupan

(Fuyuto, JH, Nagata, Tsumura. Anomalous dimension for CPV operators are evaluated in this paper.) 24

If new colored particle is discovered,

The general fermion-scalar interaction is

$$-\mathcal{L} = \bar{\psi}_B(s_{BAS} + a_{BAS}\gamma_5)\psi_A S + \text{h.c.}$$

And if $\text{Im}[s_{BAS}a^*_{BAS}] \neq 0$, CP is violating. Recently, we derive general formula for the Weinberg operator. (Abe, JH, Nagai, 1712.09503)

Higgs studies with EDMs

The discovered Higgs boson is the SM one ?

1, Higgs couplings to fermions and bosons are proportional to their masses?

- 2, Higgs boson is only one?
- 3, Higgs boson is CP even?
- 4, Higgs boson interaction is flavor-conserving?
- 5, Higgs boson has new particles?

EDM measurements give hints for some of these questions.

Higgs-mediated Barr-Zee diagrams

When Higgs boson has CP-violating coupling with SM particles or new particles in BSM, the Barr-Zee diagrams at two-loop level generate (C)EDMs for quarks and leptons.

Higgs-mediated Barr-Zee diagrams

When Higgs boson has CP-violating coupling with SM particles or new particles in BSM, the Barr-Zee diagrams at two-loop level generate (C)EDMs for quarks and leptons.

New (charged) fermions coupled to (discovered) Higgs boson may contribute to both Higgs decay to 2 gammas and also EDMs.

New physics contribution to EDM and $h \rightarrow \gamma \gamma$

SU(2) mutiplet fermions (ψ), whose neutral component is the DM candidate, may have coupling with Higgs boson,

$$\mathcal{L}_H = -\frac{1}{2\Lambda} |H|^2 \ \bar{\psi}^c (1+i\gamma_5 f)\psi + h.c..$$

(JH, Kobayashi, Mori, Senaha)

Blue lines: SI Cross section For DM direct Detection Red lines: Signal strength for $h \rightarrow \gamma \gamma$

- Gaugino-Higgsino system studied by Giudice and Romanino.
- Recent similar works: Fan and Reece. McKeen, Pospelov and Ritz.

....

Two-Higgs doublet models

Two-Higgs doublet models have CP phase in the potential, and Barr-Zee diagrams generate (C)EDMs.

In Two-Higgs doublet models Z₂ symmetry is introduced to suppress FCNC processes.

Scalar potential in softly broken Z₂ symmetry has one CP phase.

$$\begin{split} V = & m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - \left(\left(\text{Re} m_3^2 + i \text{Im} m_3^2 \right) H_1^{\dagger} H_2 + (h.c.) \right) \\ &+ \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) \\ &+ \left(\lambda_5 e^{i2\phi} (H_1^{\dagger} H_2)^2 + (h.c.) \right). \end{split}$$

Two-Higgs doublet models

In Two-Higgs doublet models Z₂ symmetry is introduced to suppress FCNC processes. The 4 types of assignments are posiible

In typical cases, Yukawa coupling constants of H1 are larger than the SM ones, since $\langle H_2 \rangle >> \langle H_1 \rangle$ is expected. In the case, we may discriminate models with correlation among EDMs.

Neutron EDM in Two-Higgs doublet models

- Neutron EDM comes from CEDMs.
- For large tanβ, nEDM is suppressed in type I and X while it has the moderate dependence in type II and Y.
- Red region is excluded.

(Abe, JH, Kitahara, Tobioka)

Electron EDM in Two-Higgs doublet models

- For large tan β , nEDM is suppressed in type I and Y while it has the moderate dependence in type II and X.
- Accidental cancellation appears in type II and X due to tau/bottom loops.
- Red region is excluded.

Summary

- EDMs are sensitive to CP violation in new physics at and beyond TeV scale. The measurements are complimentary to the energy-frontier physics, such as LHC. Due to current null results in new physics searches at LHC, importance of the EDM measurements is increasing.
- Measurements of various particles are important to probe different CP violating terms.
- General formulae for Weinberg operator is derived. It is sensitive to new colored particles.
- Higgs boson properties can be constrained with EDMs induced by Barr-Zee two-loop diagrams.
- Evaluation of hadronic EDMs has large uncertainties, and more efforts are needed to reduce them.