

Coherently amplified multi-photon emission toward neutrino mass spectroscopy

Takahiro Hiraki, for the SPAN collaboration

Research Institute for Interdisciplinary Science (RIIS) Okayama University

10th International workshop on Fundamental Physics Using Atoms

Introduction

SPectroscopy with Atomic Neutrino

- ✓ determine unknown neutrino properties (ex. absolute masses) by using techniques of laser spectroscopy
- Radiative Emission of Neutrino Pair (RENP)

Rate Amplification

- De-excitation rate of RENP: extremely small
- ➡ Rate amplification using **atomic coherence**

- If $\Delta k = 0$ holds, the emission rate $\propto N^2$ (rate amplification)
 - momentum conservation among initial and emitted particles
- \checkmark study the mechanism using multi-photon emission processes

Previous experiments

5

- ✓ Two-photon emission (TPE) process using vibrational states $(v=0, J=0 \leftrightarrow v=1, J=0)$ of para-hydrogen (pH₂) molecules
- 1-photon E1: forbidden, 2-photon E1×E1: allowed

Rate amplification factor $> 10^{18}$

Prog. Theor. Exp. Phys. 2014, 113C01

- 532 nm, 684 nm pulse lasers
- stimulate TPE process by a trigger laser
- injection from the same direction

Current experiment: Two-photon emission from pH₂ molecules excited by **counter-propagating** lasers

Coherent amplification condition

Energy-momentum conservation among photons
 Process: Two-photon emission (TPE)

Coherent amplification condition

✓ Energy-momentum conservation among photons+v
 ✓ Process: Radiative emission of neutrino pair (RENP)

✓ High-quality mid-infrared (4806 nm) laser is required.

Laser setup (previous experiment)

• We previously used a mid-infrared laser as the trigger.

- We use this laser as one of the trigger laser again.
- Intensity and linewidth of this laser are not enough for the excitation laser.

Laser setup (new)

• adopt a cavity in the OPG section (effective injection seeder)

MIR pulse energy: ~5 mJ/pulse MIR linewidth: ~150 MHz MIR pulse duration: ~5 ns (FWHM)

significant improvement!

Experimental setup (1)

- Signal light is generated by the trigger laser and advances in the backward direction
- amplification condition (momentum conservation)
- Wrong-polarization component of the background scattering light is reduced by using a polarized beam splitter.

Experimental setup

✓ Construction of the laser system was finished last year.

Results: detuning dependence

14

- use the new mid-infrared laser as both pumps and trigger
 - pump energy: ~1 mJ/pulse, trigger energy: ~ 0.6 mJ/pulse

• Signal energy: ~20 nJ/pulse at $\delta=0$

Results: detuning dependence

Results: detuning dependence

16

- comparison with simulation based on Maxwell-Bloch equations
- describe development of laser fields and coherence
- Though it is difficult to reproduce absolute signal intensity, curve shape is consistent between data and simulation.

Results: Pressure dependence

• vary the pH₂ target pressure

detuning curve width (FWHM)

- Laser linewidth and pressure broadening determine the width
- Signal intensity increases as the target density larger.
- ✓ Consistent tendency is obtained between data and simulation.

trigger frequency dependence

- vary only the frequency of the trigger laser
- amplification condition requires $\Delta = 0$

 $\omega + \Delta$

 $\omega - \Delta$

|e>

|g)

ω

ω

- A signal peak is observed
 obscure peak due to weaker trigger intensity
- ✓ Further studies (experiment/ simulation) will be conducted.

Next step

Higher QED process

study of coherent amplification of higher QED process
2-photon E1×M1, 3-photon E1×E1×E1

- ✓ Xe target:
 one of the candidates
 of the RENP experiment
- use metastable excited state
 - E1, E1×E1: forbidden
 - E1×M1, E1×E1×E1: allowed

Ti:Sapphire (OPA)

✓ Experiment will start soon!

Summary

para-H₂ experiment

- coherence generation by counter-propagating laser
- observed two-photon emission signal
- further investigation ongoing

Xe experiment

- coherent amplification of higher-order QED processes
- Laser system construction is almost finished and experiment will start soon.

Back up

24

✓ J=0 (ground state) para-H₂: completely spherical wavefunction
 ➡ weak intermolecular interaction
 ➡ longer decoherence time

- generate high-purity (>99.9%) para-H₂ from normal H₂
- converter: cooled to 13.8 K, FeO(OH) as magnetic catalyst

Laser linewidth measurement

- measurement of the narrow-linewidth MIR laser
- method: absorption spectroscopy of carbonyl sulfide (OCS)

Laser linewidth

observed absorption spectra

	width (FWHM)
Observed linewidth	175 (13)
Doppler width	99
MIR Laser linewidth	145 (16)

✓ narrow laser linewidth (~1.6×FT-limit) is achieved.

Maxwell-Bloch equations

Development of the density matrix

$$\begin{aligned} \frac{\partial \rho_{gg}}{\partial t} &= \mathrm{i}(\Omega_{ge}\rho_{eg} - \Omega_{eg}\rho_{ge}) + \gamma_1\rho_{ee}, \\ \frac{\partial \rho_{ee}}{\partial t} &= \mathrm{i}(\Omega_{eg}\rho_{ge} - \Omega_{ge}\rho_{eg}) - \gamma_1\rho_{ee}, \\ \frac{\partial \rho_{ge}}{\partial t} &= \mathrm{i}(\Omega_{gg} - \Omega_{ee} + \delta)\rho_{ge} + \mathrm{i}\Omega_{ge}(\rho_{ee} - \rho_{gg}) - \gamma_2\rho_{ge}. \end{aligned}$$

ρ: density matrix

$$\Omega_{gg(ee)}$$
: two-photon
Rabi frequency
 $\Omega_{eg(ge)}$: AC Stark shift
 γ_1, γ_2 : relaxation rates
δ: detuning

Development of the electric fields

$$\begin{pmatrix} \frac{\partial}{\partial t} - c\frac{\partial}{\partial z} \end{pmatrix} E_{p1} = \frac{i\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee})E_{p1} + 2\alpha_{eg}\rho_{eg}E_{p2}^* \right), \\ \begin{pmatrix} \frac{\partial}{\partial t} + c\frac{\partial}{\partial z} \end{pmatrix} E_{p2} = \frac{i\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee})E_{p2} + 2\alpha_{eg}\rho_{eg}E_{p1}^* \right), \\ \begin{pmatrix} \frac{\partial}{\partial t} - c\frac{\partial}{\partial z} \end{pmatrix} E_{trig} = \frac{i\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee})E_{trig} + 2\alpha_{eg}\rho_{eg}E_{sig}^* \right), \\ \begin{pmatrix} \frac{\partial}{\partial t} + c\frac{\partial}{\partial z} \end{pmatrix} E_{sig} = \frac{i\omega_l N_t}{2} \left((\alpha_{gg}\rho_{gg} + \alpha_{ee}\rho_{ee})E_{sig} + 2\alpha_{eg}\rho_{eg}E_{sig}^* \right).$$

 $ω_{l}$: laser frequency N_{t} : target density α: polarizability